
SMART-CONTRACT-AS-A-SERVICE

USER GUIDE

SIMBA Smart-Contract-as-a-Service (SCaaS) provides a tailored interface
to your blockchain, defined by the smart contracts you have designed.

V1.0.2

2

OVERVIEW
SIMBA Smart-Contract-as-a-Service (SCaaS) provides a tailored interface to your blockchain, defined by the
smart contracts you have designed. SCaaS provides two main services related to a smart contract:

1.	 A REST API that models the methods and arguments in your smart contracts to bring your business
process endpoints to the enterprise. A simple POST to the API will result in a transaction on the Azure
Blockchain.

2.	 The Explorer Interface to query for transactions on the blockchain. Browse, search and view the details
of all of your Blockchain transactions for each smart contract using the SCaaS Explorer.

This document describes how to create the contracts and how to deploy them to your Azure environment.

General documentation on SIMBA Chain is available at simbachain.com/documentation

CONTRACT DESIGN
The first step to getting going is to design an Ethereum Smart Contract at SIMBA Chain. Sign up to
simbachain.com and create a contract and SIMBA App using the simple UI. Detailed documentation on
how to do it is provided at https://simbachain.com/documentation/.

Once you have this created your contract and app, you can retrieve your Bootstrapper Config Key. Keep
this handy; it’ll be needed later.

Once you have your Bootstrapper Config key, you are ready to set up your Azure environment.

NOTE: Do not start your method parameter names with underscores, e.g. ‘_my_param’. Underscores are
reserved for SCaaS usage, to ensure there are no clashes between system properties and user defined
properties. A parameter name of ‘my_param’ is fine.

3

DEPLOYING FROM AZURE
MARKETPLACE

Search for SIMBAChain in the marketplace,
then click on the SIMBA Chain Smart-
Contract-as-a-Service entry.

Choose the subscription you wish to deploy
to, select the location to deploy to, and create
a new resource group to deploy to. Choose
an application name (note that this will be
the name assigned to your API endpoint, e.g.
https://yourappname.azurewebsites.net).

On the next screen, click create.

4

Create a Bootstrapper Key - this key is used to
protect access to the bootstrapper.

Configure Active Directory auth. We recommend
you select yes, and activate AD auth now, as
otherwise, your API will have no authentication.
Follow this guide to set up an Azure AD App
Registration in order to obtain the Tenant ID
and Client ID - https://docs.microsoft.com/en-
us/azure/active-directory/develop/quickstart-
register-app

For the Redirect URI, use https://YOURAPPNAME.
azurewebsites.net/.auth/login/done

Generate Consortium and Transaction
passwords for your Azure Blockchain
Service based Quorum deployment.
These are not currently used in SCaaS,
but are required nonetheless for an
Azure Blockchain Service deployment.

Choose your database SKU and Size, and
set credentials for access.

5

Create or select your storage account.

Finally, confirm the details
are correct, and press create.

6

SERVICES
The figure below shows the architecture of your deployed SCaaS instance. As you can see, SCaaS leverages
many of the built-in features of Azure helping to make your experience as seamless as possible.

SCaaS leverages Azure Active Directory (AD) for authentication and authorization. This provides a single
point of access control that you can integrate easily with other existing deployed services, as well as
providing you with full control over access to SCaaS services. Additionally SCaaS integrates with Azure Key
Vault meaning you don’t have to worry about creating or maintaining blockchain addresses or associated
private keys. Instead, SCaaS creates a new blockchain address and private signing key for each user that
accesses the HTTP API and reuses those details for each request they make. The secret blockchain address
and private key are mapped to the user’s AD Object ID in Key Vault. This also means that you can easily
track who has created which transactions on the blockchain by matching up the user’s object ID in AD to
the key in Key Vault.

SCaaS uses Azure’s Service Bus Queue in order to create a robust mechanism for pushing data to the
blockchain. Messages are pulled from the queue before pushing to the blockchain.

For off-chain data, SCaaS leverages Azure’s blob store. This allows you to store large files associated with
transactions outside of the blockchain itself and referenced by a hash value on the blockchain, providing a
pointer to the data and ensuring data integrity via the hash value. When files are received via the HTTP API,
they are zipped up and stored in the blob store. Along with the files, the zip file contains a manifest giving
the hash of each individual file, the hash algorithm used (currently SHA256), and the file’s mime type and
size. The filename of the zip itself is the hash of the zip file. The manifest also describes the algorithm for
this hashing (currently also SHA256), allowing you to validate the zip and its contents for integrity.

OFF CHAIN

BLOB STORE

BLOCKCHAINS

MORE...

CLIENT ACCESS API DATA BLOCKCHAIN

DEVICES

APPLICATIONS

ACTIVE
DIRECTORY

SERVICES

SIMBA EXPLORER

API

CHAIN WATCHER

TASKS

QUEUE

KEY VAULT

SUBMITTER

DATABASE

POSTGRESQL

SIMBA SCaaS

API

SIMBA SMART CONTRACT AS A SERVICE

7

SCaaS uses an Azure managed instance of Postgres to store transaction data, allowing fast query on the
contents of the blockchain. The database is populated by the chain watcher component which checks for
blocks being created on the blockchain and captures transactions on your smart contract that have been
verified by the blockchain.

Finally, SCaaS leverages Azure’s blockchain service. Currently this is the only blockchain supported,
however, SIMBA supports multiple blockchains and SCaaS will allow a variety of possible blockchain
backends in the future.

The pale yellow boxes in the diagram are the SIMBA specific components that have been deployed to
Azure Web Apps. Specifically, you interact with the Bootstrapper Service initially to pass in your export
key and to trigger the deployment of your smart contract and the services used by it. You use the SIMBA
SCaaS HTTP API to send data to the blockchain and you use SIMBA Explorer to query for transactions
sent to the blockchain. The following sections describe these services in more detail.

AUTHENTICATION
Before we describe the individual services, we should talk about authentication and authorization.

Your SCaaS deployment should be integrated with your Azure Active Directory (AD). If it is not, you
should add AD protection. As described above, SCaaS leverages AD in order to simplify access control
for you. When accessing the user interfaces of SCaaS, the user will be redirected to the Azure login page.
From here, they will use an OAuth 2 token to access the SCaaS services.

To access the HTTP API from your enterprise software, you should implement OAuth 2 implicit flow
authentication. More details on this can be found here https://docs.microsoft.com/en-us/azure/active-
directory/develop/v2-overview, for a variety of programming languages.

Note that the Swagger HTTP UI expects the OAuth 2 token in the Authorization header. This token
should have the form ‘Bearer: <base64 encoded token received from the authentication server>’.

Click on the “ADD” button to see the Add new contract dialog. Enter your
config key from https://app.simbachain.com and a name for the contract.
This will trigger the deployment of your smart contract API, customised to
the contract’s method signatures. Once complete, your new contract will
appear in the list on the left.

You can add multiple contracts here, which will be processed and access
provided via API.

DEPLOYING YOUR SMART CONTRACT
Navigate to your newly deployed app. If you are
unsure where this is, look at the resource group
in Azure that you deployed SCaaS to, and click on
the App Service Web App. It will provide details,
including the URL.

Once you’ve navigated to the running app, scroll
down and click the link to “SIMBA Explorer”. You’ll
be presented with the screen below (if the menu
isn’t visible, click the menu icon on the top left).

8

HTTP API
The HTTP API provides both POST and GET methods to push transactions and query for transactions.
These methods are linked to the method in the smart contract. The POST is the primary API to use as
Explorer (see below) exposes the GET API in addition to a general recent transactions view across all
smart contract methods.

This api can be found at https://<my-scaas-url>/v1-docs

The POST API receives multipart/form-data encoded payloads. The payload should be the parameters
used to execute the smart contract method. Even if you do not intend to use the Swagger HTTP UI for
POSTing data, it is useful to examine the expected inputs to an HTTP call. The Solidity types you defined in
your contract may not map directly to the types understood by the HTTP API. Specifically, types like Solidity
bytes should be encoded as strings. As a rule, a string representation of bytes should be hex encoded
which means the string should be ‘0x’ followed by twice the number of characters defined by the bytes
type. For example, if a type is defined as ‘bytes32’ then the string representation would be 64 characters
long prepended with the hex prefix ‘0x’.

Solidity address types should likewise be encoded as hex strings.

If you defined file uploads as part of your smart contract method, then the ‘_bundleHash’ parameter will
be present. This does not need to be filled in if you are POSTing files. It is used to identify the method as
allowing file uploads and used for querying a previously uploaded file.

A transaction sent to the blockchain goes through a number of states. When you POST a transaction, and
no errors occur, you receive a response that contains the unique requestId and a state of ‘INITIALIZED’. If
the request fails, you will see a state of ‘FAILED’.

At this point the transaction has not been sent to the blockchain yet. Instead, it is put into the submission
queue and picked up asynchronously by the SCaaS submitter that submits the method call to the
blockchain. Once this submission has taken place, the state of the request moves to ‘SUBMITTED’. This can
be seen in Explorer’s recent transactions view. Transactions that have been submitted are now visible to
query from recent transactions. At this point the full transaction is not available.

Once the chain watcher has checked that the transaction has been confirmed and is embedded in the
blockchain, it updates the state to ‘COMPLETED’ and the full details of the transaction become available,
including the inputs to the method which are the parameters you are most interested in. If an error occurs
while reading the transaction from the blockchain, then the state will be updated to ‘FAILED’.

From the home page of your SCaaS deployment, you have a link to a Swagger UI of the HTTP API. This
allows you to manually test out your API, although typically the API is used to integrate directly with your
enterprise software stack.

This screenshot shows an example page for a contract called
Smarty. It has three methods and the API supports both POST
– i.e., send data to the blockchain, and GET, i.e. query for data
from the blockchain. The Explorer UI uses this API for showing
query results.

The UI shows you the input parameters for POSTs and query
options for GETs.

At the top right of the page is a drop down menu for you to
select the contract you want to see the API for.

When using the Swagger UI, you have already logged into
Azure AD so you do not need to add Authorization headers.

9

EXPLORER
Explorer allows you to add new contracts to your SCaaS
deployment. Once you have a deployment key from
simbachain.com, you can register the contract with SCaaS.
Click on the ‘ADD’ link above the left hand navigation bar.
A dialog will display as shown below. Paste your key in and
give the contract a unique name. Names should only contain
letters, no spaces and be lowercase.

The newly deployed contract will appear in the navigation bar on the left.

Explorer provides an interface to querying the blockchain. There are two primary views:

1.	 Recent transactions – these are all transactions you have created on the blockchain. Some may not have
details available yet, especially the most recent.

2.	 Smart Contract Method view – This view shows the transactions relating to a particular smart contract
method. These transactions have been verified on the blockchain.

Irrespective of the method parameters defined in your smart contract, transactions have a number of
common properties. These all begin with an underscore. They are described in more detail below.

NAME TYPE NOTES

_txnHash string
The unique hash of the
transaction once it has been sent
to the blockchain.

_sender address This is the address of the identity
that published the transaction.

_created Date string

This is the time and date the
transaction was submitted
and the transaction hash was
received.

_requestId string
This is the unique id for the initial
request which is returned from
an HTTP call.

_state string

The current state of the
transaction. One of INITIALIZED,
FAILED, SUBMITTED or
COMPLETED

_block integer
The block number the
transaction was placed into on
the blockchain

10

The Recent Transactions view shows submitted and completed transactions for all methods of your smart
contract. You can query on the various common fields that all transactions have such as request ID, the
sender and the transaction hash.

The Contract Method view allows you to view completed transactions. Here you can view the details of
transactions by method.

UTILITIES
In the event of network failures and other unforeseen events, messages coming from the queue may be
inserted into the dead letter queue. This sub-queue contains messages that failed to be processed after
a number of retries. To view the raw dead letter queue, you can go to https://<my-scaas-url>/admin/
viewDlq to see the messages in the queue. To attempt to move them back to the main queue, you can
go to https://<my-scaas-url>/admin/clearDlq. This will attempt to move the messages back to the
main queue for reprocessing.

Additionally, unrecoverable errors are logged to the log table in your SCaaS database. You can view
errors here and determine the possible causes.

Swagger documentation for the administration APIs can be found at https://<my-scaas-url>/docs

Transactions that accept files also have two buttons on the
left side of the row. These can be used to download the
bundle from Azure’s Blob Storage and to view the JSON
manifest describing the contents of the files associated
with the transaction.

11

6100 Michigan Rd., Plymouth, IN 46563info@simbachain.com 574-914-4446simbachain.com

